心跳監測器

綜高三孝

組員:楊子葳,黃宇萱,吳承鎧 指導老師:陳祈燕老師

- 前言
- 流程
- 預期成果
- 模組介紹
- 理論探討

- ●專題成果
- *結論
- 參考資料
- 提問時間

01.前嵩

研究背景&目的

- 心率監測器是一種用於測量心率,心跳速度,監控我們的 心跳是否正常,健康的設備。
- 近年市面上也出現許多有多功能的手錶,其中的功能便有測量心率。台灣已步入高齡化社會。所以組員們決定要以心率監測器為主題,做出一個長輩,有需要的人們方便攜戴的監測器。

02. 架構

架構

各項電路的設計, 製作,測量及檢修 軟體的編寫 資訊 電子 心率監測器 電池 感測器的接收 電機 物理

甘特圖

週次。 (日期)。 工作項目。	1₽	2₽	3₽	4.0	5₽	6₽	7₽	8₽	9₽	10	11	12	13₊	14	15₊	16	17	18₽	負責成員↓
資料蒐集₽	4	4	ø	4	ø	ø	ą.	4	4	4	٩	4	φ	ø	ą.	φ	ą.	4	楊∖黄₽
理論探討₽	4	٠	Þ	4	4	4	ą.	4	4	4	ته	٠	4	Þ	ą.	4	¢	¢	楊∖黄ℯ
專題準備₽	4	٠	¢.	t.	¢	¢	t	¢	¢	¢	٠	٠	¢	4	¢	4	¢	¢	全員₽
硬體規劃₽	4	₽ ²	Þ	4	4	4	ą.	4	4	4	٩	ø	4	Þ	ą.	4	4	¢	楊∖黄ℯ
硬體製作↔	4	÷,	4	¢	4	4	t	4	¢	÷	φ	ø	4	4	÷	4	t.	¢	桑。
軟體測試&修改↓	4	٠	4	¢	4	4	¢	4	÷	÷	٠	٠	4	4	ą.	4	¢	¢	黄₽
整體測試♂	47	47	٠	47	٠	٠	¢.	4	÷	÷	¢2	٠	47	٠	٦	4	42	٦	黄₽
PPT&報告撰寫₽	4	4	ø	4	φ	φ	4	4	4	4	٩	ø	4	ø	ą.	φ	ą.	ф	楊₽
口頭報告₽	4	٠	4	¢	4	4	¢	¢	4	¢	ت	٠	4	4	÷	4	4	¢	黄和
預定進度₽	5₽	10	204	25+	30∗	354	40	45	504	554	60	65	70	75	804	90	95	100	累 積↓ 百分比‰

03.預期成果

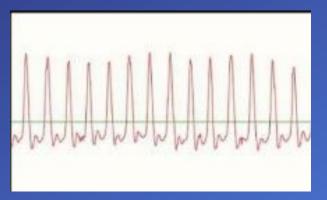
心跳傳感器

Arduino NANO

I2C傳輸

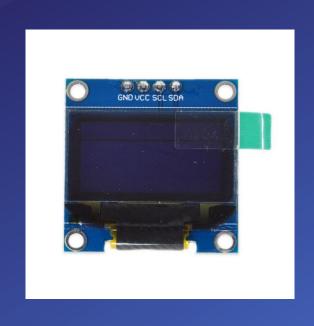
電源

• 隨時隨地都可以測量心跳


• 隨身攜帶,輕便

OLED顯示器

04.模組介紹


心跳感測器:CSH0005-1

- 感測器發出的光透過皮膚和組織後被吸收 收然後被反射回檢測器。
- 因為動脈中的血流量隨心臟每次跳動發生改變,因此光線被吸收的量以及檢測器收到的訊號強度也會隨之變化。
 - 使用一個濾波器和放大器來增加脈衝的幅度,以及正常化周圍的參考點的信號。

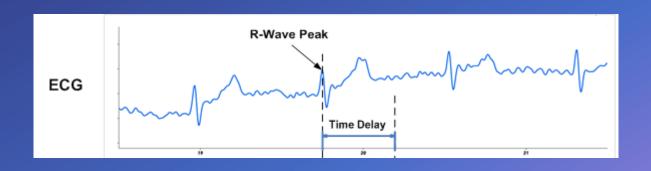
0.96吋OLED顯示器

- 功耗低
- 結構簡單
- 成本低
- 高亮度

具有四個接腳:

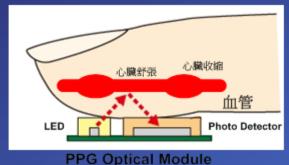
GND -接地連接。

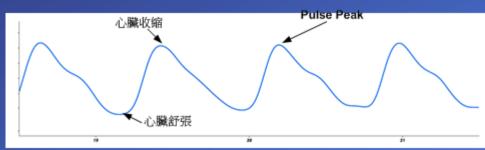
VCC -電源·


SCL - I2C時脈線。

SDA - I2C數據線。

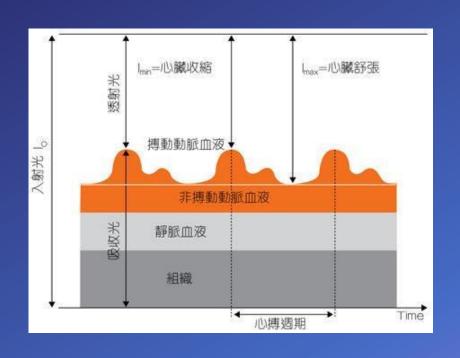
05.理論探討

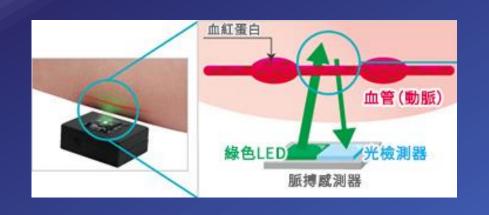

心電描記術 (ECG)


- 一種經胸腔以時間為單位記錄心臟的電生理活動心電圖 所記錄的是心臟整體的電位變化。
- 測量ECG信號常常要在身體多個部位連接感測器電極, 在胸部和四肢之間最多可以連接10個電極。

光體積變化描記圖法 (PPG)

- 在透射PPG中,通過指尖的光線
- 在反射PPG中,來自手腕表面附近的光線。




當光照透過皮膚組織然後再反射到 光敏感測器時,光照會有一定的衰 減。把光轉換成電信號,得到的信 號就可以分為直流DC信號和交流AC 信號·提取其中的AC信號·就能反 應出血液流動的特點。

紅光&綠光的比較

透過型通過體表照射紅光,測量隨著心臟的脈動而變化的血流量,作為透過身體的光的變化量來測量脈搏波。

感測器由彼此緊鄰放置的光源和檢測器組成,測量時需直接放在皮膚上。發出的光滲透進皮膚、組織和血管,然後被吸收、傳送以及反射。檢測器記錄的反射光強度將根據流經動脈的血流量變化而改變

反射型脈搏感測器是向生物體照射550nm左右波長的綠光,利用光電電晶體測量生物體反射的光。

含氧血紅蛋白存在於動脈血液中,具有吸收入射光的特性,因此通過檢測隨時間序列並隨心臟搏動而變化的血流量,測量脈搏訊號。

I2C(Inter-Integrated Circuit)

- 串列通訊匯流排
- 不能應用到長距離裝置的通訊

- I2C僅使用兩條線在設備之間傳輸數據:
- SDA(串行數據)-主站和從站發送和接收數據的線路(可連接A4
- SCL(串行時脈)-承載時脈信號的線路(可連接A5

06. 專題成果

遭遇的困難&解決方法

遭遇的困難

- 電路本身體積大
- 市面上沒有合適大小的錶帶

解決方法

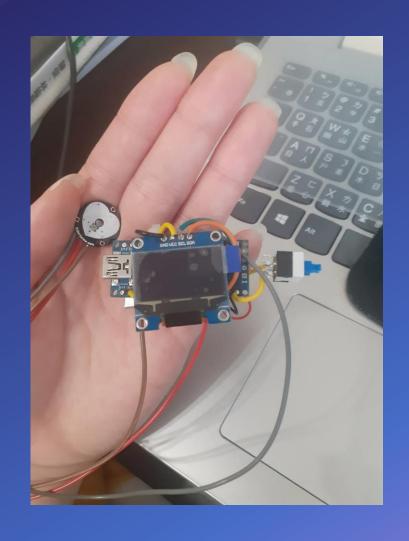
- 將UNO板換為體積較小的 NANO板,且將一般9V電 池改為鋰聚合物電池來縮 減體積。
- 改用3D列印的方式來製作

程式

使用Arduino IDE 使用程式庫

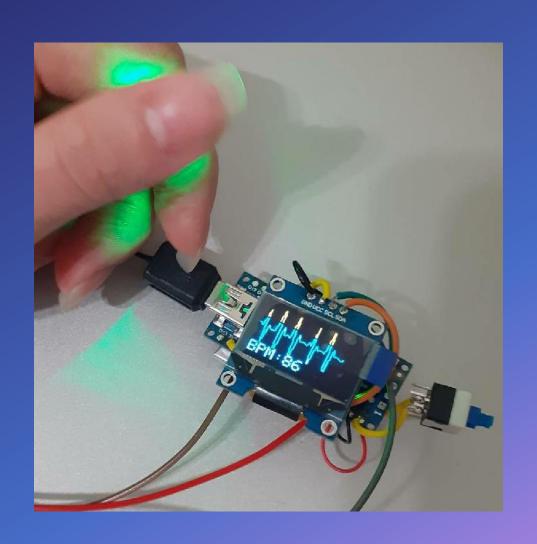
- Adafruit GFX庫
- Adafruit SSD1306

程式流程圖


開始

主程式迴圈

螢幕畫面清空


螢幕顯示 BPM值 BPM取十次心 跳值的平均值

內部硬體組裝

功能展示

07. 結論

未來展望

- 因應物聯網時代,若能將心律值回傳到手機,且記錄下來, 可以讓使用及追蹤心率更方便。
- 可設定除了使用者本人之外還有其他人會收到目前配戴者的狀況。
- 心跳不正常時發出警告。
- 由於時間限制,導致於只能對心律方面做研究,若能將其他功能加入裝置中例如:體溫、步數計算,裝置的用途會更廣,且更能被社會大眾採納。

08. 参考資料

- 微處理機https://www.block.tw/blog/arduino-nano-pin/
- 成大資工 I2C: Inter-Integrated Circuit http://wiki.csie.ncku.edu.tw/embedded/I2C
- ECG/PPG量測解決方案 https://www.richtek.com/Design%20Support/Technical%20Document/AN057?sc_lang=zh-TW
- 為穿戴式健身裝置設計LED感測器 https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800711378_480502_TA_57e1bee9.HTM
- 協定用法原理簡介-晶片溝通的橋樑
 - https://www.strongpilab.com/i2c-introduction/
- 林育德:脈波信號與PPG信號特徵之相關性研究,逢甲大學 https://drive.google.com/file/d/1Q69YECEL0oHa_aLArVlp2Z1LfOgAAhKy/view?ts=5fc0bd70
- 一何謂脈搏傳感器?,羅姆 https://www.rohm.com.tw/electronics-basics/sensors/sensor_what3

- 呂宗憲,林筱莉,陳智傑:ECG 與 PPG 信號之相關性研究,逢甲大學
- https://drive.google.com/file/d/1SG693kHaL3JpkGe9wVQ5ooULwW4JqCcz/view?ts=5fc0bf5c
- Using OLED Displays with Arduino · <u>DroneBot Workshop</u>
- https://dronebotworkshop.com/oled-arduino/
- 何謂脈搏感測器?https://www.rohm.com.tw/electronics-basics/sensors/sensor_what3
- ECG/PPG量測解決方案
- https://www.richtek.com/Design%20Support/Technical%20Document/AN057?sc_lang=zh-TW

09.提問時間

END

謝謝聆聽