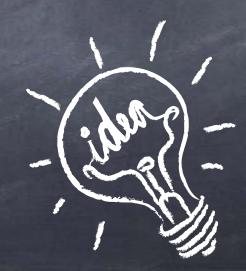
期末專題報告

智慧電風扇

Intelligent Fan

指導老師:簡靖哲 老師


組長:28 陳毓壎

組員:02 王主恩 03 王經安 04 王維熙

- ▶前言
- ▶成員簡介
- >理論探討
- ▶專題設計過程
- ▶專題成果

- 〉結論與建議
- 〉參考文獻

前言

The Later Control of the Control of

背景

隨著科技發展,市面上電扇產品更加多樣化,但 其固定性的轉動會讓使用效率降低,使每個人吹 到的時間很短,因此我們嘗試做出一台能夠依循 人體移動而改變其移動方向的電扇

預期成果

- > 可變換各種風速「強、中、弱、自然風」
- ► 利用「MIT App Inventor2」製作 APP 與藍芽 模組「HC-05」連動控制風扇各種模式

成員簡介

組長:陳毓壎

參與專題 工作項目:

- 1. 程式設計
- 2. 軟體測試
- 3. 計劃書製作
- 4. 口頭報告
- 5. 撰寫書面報告

組員:王主恩

參與專題 工作項目:

- 1. 電路板設計
- 2. 繪製電路板
- 3. 計劃書製作
- 4. 口頭報告
- 5. 撰寫書面報告

組員:王經安

參與專題 工作項目:

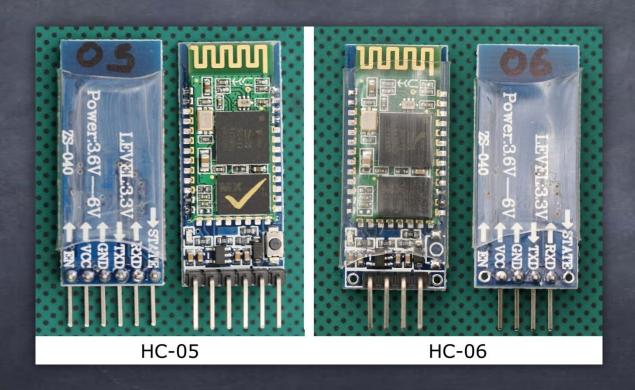
- 1. 繪製電路板
- 2. 參與 3D 列印
- 3. 外殼組裝,電路拼接
- 4. 計劃書製作
- 5. 口頭報告

組員:王維熙

參與專題 工作項目:

- 1. 製作,組裝外殼
- 2. 3D 列印
- 3. PPT 製作
- 4. 口頭報告

理論探討


元件介紹

- 一. HC-05藍芽模組
- 二. E18-D80NK
- 三. MG996R
- 四.直流馬達
- 五. L298N

HC-05藍芽模組

HC-05 是一款藍芽模組,市面上較常見的除 了 HC-05 之外,還有 HC-06,兩者的差異 就是 HC-05 可以自行設定為主端或從端, 然而 HC-06 在出廠前就已經被設定為從端 或者是主端,無法自行更改,然而所謂的主 端就是發送指令,從端則是接收命令

藍芽模組 HC-05 HC-06 比較

HC-05參數表

工作電壓。	3.6V至6V。
工作電流。	配對中 30 mA 至 40mA,通訊時 8mA。
工作溫度。	-25°C至70°C。
發射功率。	3dbm∘
アす。	27mm(H)*13mm(W)*2mm(D).
AT Mode	支援多。

HC-06參數表

工作電壓。	3. IV 至 4. 2V ₂
工作電流。	配對中 30 mA至 40mA,通訊時 8mA。
工作溫度。	-25°C至55°C。
發射功率。	4dbm₀
R す。	27mm(H)*13mm(W)*2mm(D).
AT Mode.	支援少。

程式開始 F F 是否按開始鍵 是否連接藍芽〉 開始計時 隨時回報傳數值 偵測器開始偵 測人 給Arduino 計時、調整風速、自然 風等模式 風扇依風速轉 動 print 風速、模式、 計時時間 程式結束

易

```
程式碼
```

```
case 122:
   if (fan_mode == 0) {
     BTSerial.write("close ");
     BTSerial.write(" ");
     BTSerial.write(" ");
} else if (fan mode == 1) {
```

E18-D80NK

紅外線概念

紅外線是一種波長介於微波與可見光之間的 電磁波,其波長約在760奈米至1毫米之間, 是波長比紅光長的非可見光,對應頻率約在 430 THz到300 GHz的範圍內。室溫下物體所 發出的熱輻射大多都在此波段。紅外線也可 應用在軍事、工業、科學及醫學的領域。

E18-D80NK

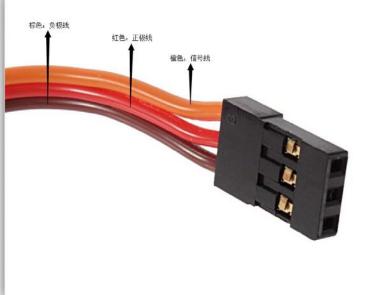
E18-D80NK是一種集發射與接收於一體的光電感 測器。檢測距離可以根據要求進行調節。此感 測器具有探測距離遠、受可見光干擾小、價格 便宜、易於裝配、使用方便等特點,可以廣泛 應用於機器人避障、流水線計件等眾多場合

E18-D80NK

- · 棕色 正極VCC
- · 藍色 負極GND
- 黑色 信號OUT

E18-D80NK 參數表

控制器	E18-D80NK
工作電壓	5V
工作電流	<25mA
有效探測距離	3~80cm
響應時間	<2ms
指向角	≤15°
工作環境溫度	-25°C~55°C
外殼材料	塑料
傳感器線長	45mm
引線長度	45cm
檢測物體	透明或不透明體
適用	生產線貨物自動計數設備、多功能提
	醒器、走迷宮機器人


MG996R

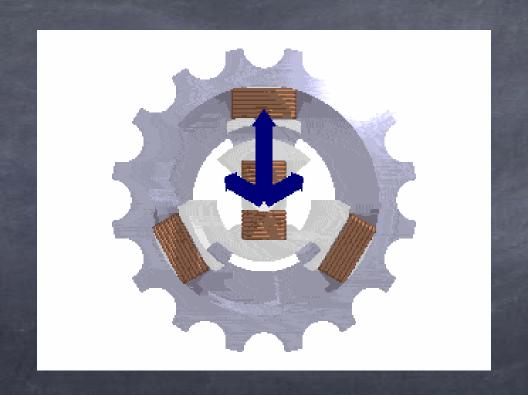
MG996R

伺服馬達的動作特性是進行位置定位控制和動作 速度控制,其主要特點是轉速可以精確控制,速 度控制範圍廣,可以安定平順等速運轉之外,還 可以根據需求隨時變更速度。在極低速度也可以 穩定轉動,也能迅速做出正轉與逆轉,也能迅速 加減速

MG996R

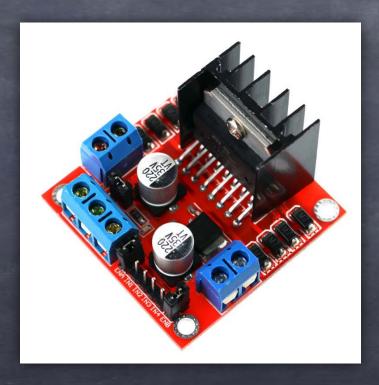
MG996R 参數表

控制器₽	MG996R₽
工作電壓₽	4. 8~7. 2V+
空載工作電流→	120mA₽
<u> </u>	1450mA₽
運行速度₽	0.17 秒/60 度(4.8V 空載)₽
運行速度₽	0.13 秒/60 度(6.0V 空載₽
饗應脈寬時間→	≤5usec
角度偏差₽	回中誤差 0 度, 左右各 45°誤差≤3°↓


直流馬達

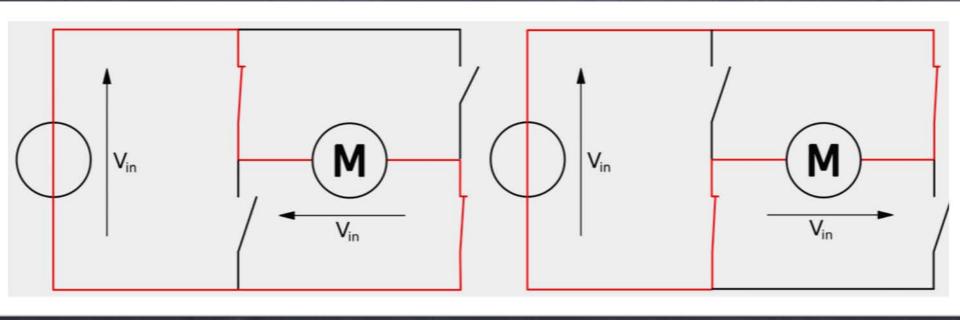
A STATE OF THE PARTY OF THE PAR

直流馬達


直流馬達的好處為在控速方面比較簡單只須控 制電壓大小即可控制轉速,但此類馬達不宜在 高温、易燃等環境下操作,而且由於馬達中需 要以碳刷作為電流變換器的部件,所以需要定 期清理炭刷磨擦所產生的污物。一般工業用直 流馬達之電壓DC 110V和DC 220V雨種

馬達的旋轉原理是當一導線置於磁場內,若導線通 上電流,則導線會切割磁場線使導線產生移動。電 流進入線圈產生磁場,利用電流的磁效應,使電磁 鐵在固定的磁鐵內連續轉動,可以將電能轉換成動 能。與永久磁鐵或由另一組線圈所產生的磁場互相 作用產生動力。

L298N


L298N

L298N

作為主驅動晶片,具有驅動能力強,發熱 量低,抗干擾能力強的特點,內置的78m05 通過驅動電源部分取電工作,但是為了避 免穩壓芯片損壞,當使用大於12V驅動電壓 的時候, 需使用外置的5V邏輯供電

L298N是ST公司生產的一種高電壓、大電 流電機驅動晶片。內含兩個H橋的高電壓 大電流全橋式驅動器,可以用來驅動直 流馬達和步進馬達、繼電器線圈等感性 負載

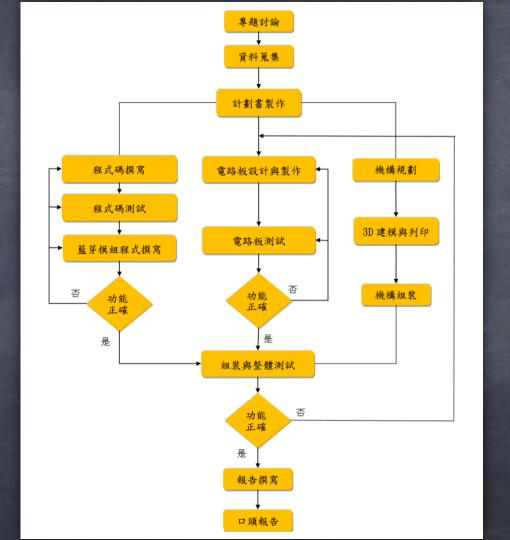
當開關S1、S4閉合時,開關S2和S3斷路,此時中間橋接的直流電動機兩端加上順向電壓正轉工作。當S1、S4斷路,閉合S2、S3時,電動機兩端電壓反相,使電動機反轉工作。

L298N 參數表

主控晶片	L298N
電壓	5V
驅動電壓	5V~35V
電流	0mA~36mA
驅動電流	2mA
工作溫度	-20°C ~135°C
工作環境溫度	-25°C∼55°C
最大功率	25W

專題設計過程

A STATE OF THE PARTY OF THE PAR


甘特圖

				1								-						_		-	THE RESERVE AND ADDRESS.
週次(日期)工作項目	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	負責成員
專題討論																					全
資料蒐集																					全
計劃書製作																					全
程式碼撰寫																					陳
程式碼測試																					陳
藍芽模組程式撰寫																					陳
電路板設計與製作																					恩、安
電路板測試																					恩、安
機構規劃																					熙、安
3D 建模及列印																					熙、安、恩
機構組裝																					熙、安、恩
組裝與整體測試																					全
報告撰寫																					全
口頭報告																					全
預定進度	0	5	10	15	20	25	30	35	50	55	57	60	65	70	75	80	85	90	95	100	累 積 百分比%

流程圖

大略:

- 1. 資料蒐集與討論
- 2. 程式設計及測試
- 3. 設計電路及實現
- 4. 外殼與外觀製作

設計架構

- 1. 利用行動電源供電給Mega2560
- 2. 透過藍芽傳送訊號給HC-05
- 3. HC-05傳遞訊號給Ardiuno控制各個元件
- 4. Sensor透過感測來移動伺服馬達
- 5. 達成電扇能跟隨人的目標

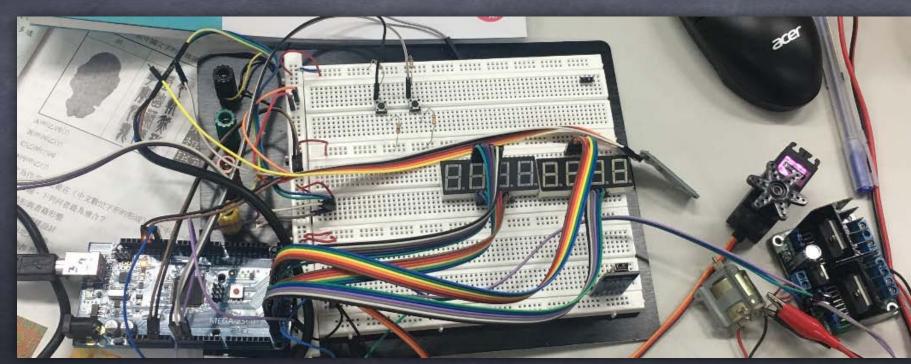
伺服馬達依感測方向轉動

Sensor感 測

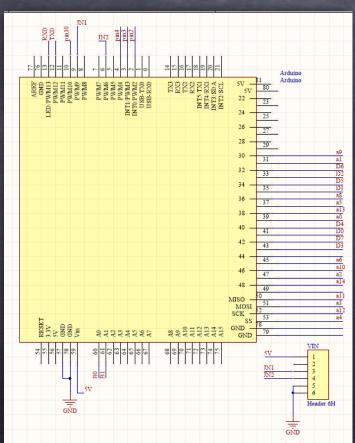
Mega2560

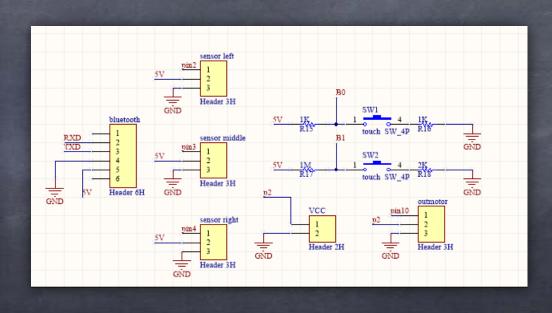
HC-05

-

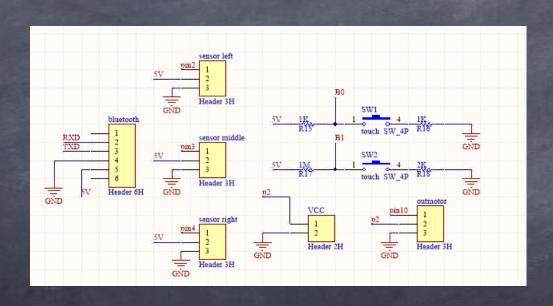


風扇轉動

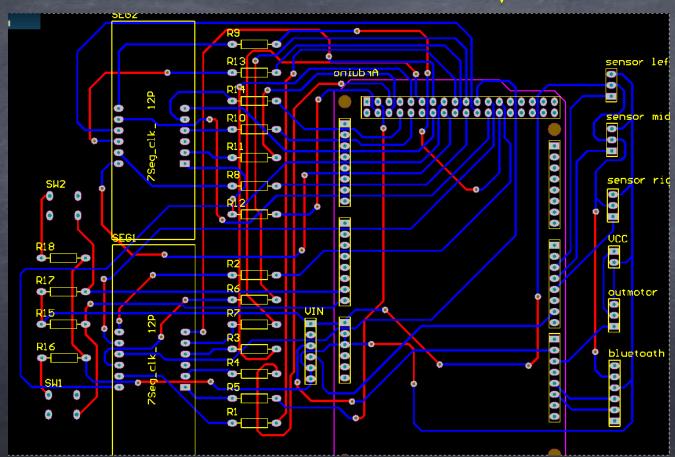

手機APP控制藍芽

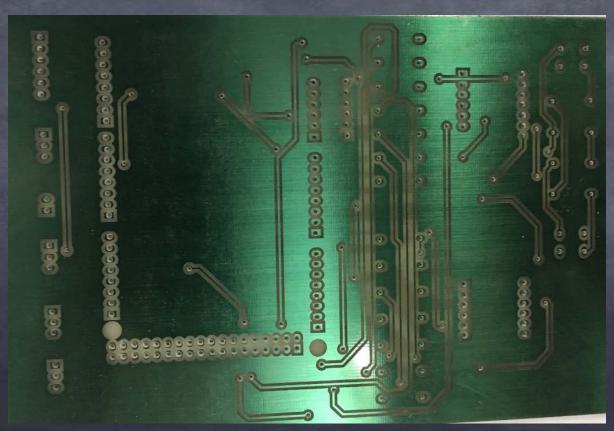

電路板製作過程

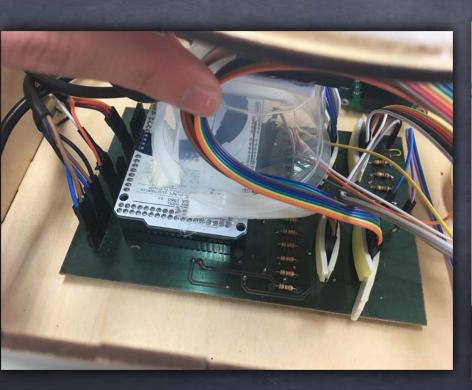
利用麵包版接出實際電路



電路圖繪製

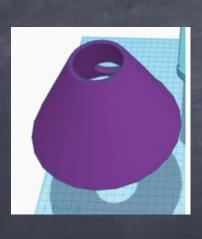


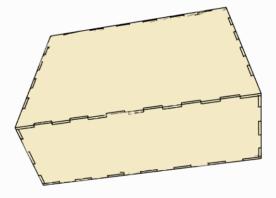

電路圖繪製


電路板設計

電路印製完成

電路板成品



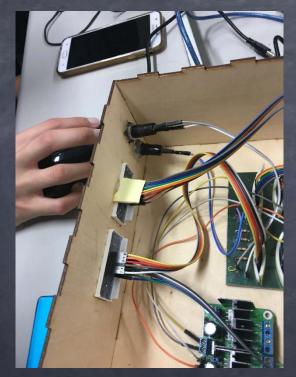

外殼製作與組裝

The state of the s

外殼製作

 寬度							
280	mm						
高度							
220	mm						
深度							
101.6	mm						
這是內側或外側尺寸?							
内側 外側							
材質厚度							
3mm	\$						
自訂厚度							
無蓋或有蓋箱子?							
無蓋 有蓋							
邊緣接合類型							
平接面 指接榫接合 丁字槽							
指接榫接合大小							
21.375							

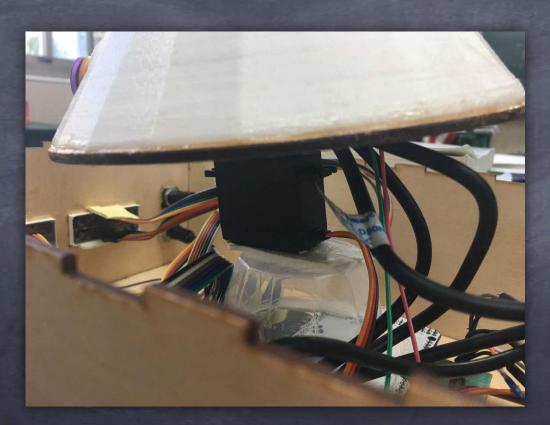
電扇外殼


使用網站&軟體:

TinkerCAD

Maker box

Laser box


組裝

利用塑膠容器架高伺服馬達

問題與解決

The state of the s

外殼製作

一開始3D列印時就算成功,但還是有些不滿意,所以決定重印結果一直印失敗,之後決定去建築科借機器來用,但還是失敗。 雷射切割時因為設了縮放所以印出來太小之後改正過來就正常了。

電路板製作

AD的操作全部忘光光,使得電路板的設計常有漏 洞,因此板子洗出來的時候常常會出現問題,例 如:接線斷掉,電路接觸不良等等…,不過再經 過自己研讀AD操作課本,再加上老師的幫忙,終 於將成品完成,雖然有小部分的七段問題,但後 來發現是自己腳位設錯,改正過來後就可正常動 作。

專題成果

符合當初預期成果,能夠手動控制風扇轉速、定時,也能利用藍芽連動控制風扇各種模式。定時 結束後,能夠停止電扇所有功能

影片

結論與建議

結論

除了可利用手動模式控制電扇轉速,也可讓現 代手機不離身的人們,透過藍芽遙控定時,並 控制伺服馬達轉向,在操作上大為提升其方便 性。雖然功能並不完整,但該有的基本功能都 有實現,如果時間夠充裕,或許能夠做出更多 獨特功能的電扇。

建議

與市面上的電扇產品重疊性過高,雖然利用Sensor 來感測人體移動,但其偵測範圍最多也只能到80cm, 而且只要感測到物體, Sensor就會動作, 希望能夠 利用更精良的感測器,讓物體及人體的辨識率大為 提升。另外外殼體積過大,使得攜帶性大為減少, 可以改善電路接線過多的問題,使內部空間可以縮 小,使電扇更為精巧。

參考文獻

CANADA CONTRACTOR OF THE PARTY OF THE PARTY

書籍

	作者	出版日 期	書名	出版社
	楊仁元 張顯盛 林家德	2008/06	理論與呈現技巧	台科大圖書股 份有限公司
	張義和	2013/10	新例說Altium Designer	新文京開發出 版股份有限公 司
Note that the second second	梅克工作室	2014/02	Arduino	台科大圖書股 份有限公司

	作者	出版日期	網站名稱	搜尋資料日期	網址
	Cubie	103/11/01	HC-05與HC-06藍 牙模組補充說明 (一)	108/08/18	https://swf.com.tw /?p=693
網	潘建宏		L298N馬達驅動模 組介紹	108/10/25	http://web.htjh.tp .edu.tw/B4/105- 2robot/
網站	維基百科		直流馬達	108/12/29	https://zh.wikiped ia.org/zhtw/%E7%9B %B4%E6%B5%81%E7%94 %B5%E5%8A%A8%E6%9C <u>%BA</u>
	SourceF orge		SourceForge Mega 2560 Footprint	108/09/27	https://sourceforg e.net/directory/os :windows/?q=altium +mega+2560

	作者	出版日期	網站名稱	搜尋資料日期	網址
	Popular mechani c	105/04/04	How To Get Started In 3D Printing	108/12/15	https://www.popula rmechanics.com/tec hnology/gadgets/al 9698/get-started- 3d-printing/
網站	TAIWANI OT		E18-D80NK 紅外 線避障感測器	108/12/29	https://www.taiwan iot.com.tw/product /e18d80nk%E7%B4%85 %E5%A4%96%E7%B7%9A %E9%81%BF%E9%9A%9C %E6%84%9F%E6%B8%AC %E5%99%A8/
	普特企 業有限 公司		MG996R 大扭力金 屬標準伺服機	108/12/29	https://www.playro bot.com/20kgf- cm/1150-standard- servo-mg996r.html

心得與Q&A

END